3.1.84 \(\int \frac {x^4 (d+e x)^3}{(d^2-e^2 x^2)^{7/2}} \, dx\) [84]

3.1.84.1 Optimal result
3.1.84.2 Mathematica [A] (verified)
3.1.84.3 Rubi [A] (verified)
3.1.84.4 Maple [A] (verified)
3.1.84.5 Fricas [A] (verification not implemented)
3.1.84.6 Sympy [F]
3.1.84.7 Maxima [B] (verification not implemented)
3.1.84.8 Giac [A] (verification not implemented)
3.1.84.9 Mupad [F(-1)]

3.1.84.1 Optimal result

Integrand size = 27, antiderivative size = 142 \[ \int \frac {x^4 (d+e x)^3}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=\frac {d^3 (d+e x)^3}{5 e^5 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {6 d^2 (d+e x)^2}{5 e^5 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {24 d (d+e x)}{5 e^5 \sqrt {d^2-e^2 x^2}}+\frac {\sqrt {d^2-e^2 x^2}}{e^5}-\frac {3 d \arctan \left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{e^5} \]

output
1/5*d^3*(e*x+d)^3/e^5/(-e^2*x^2+d^2)^(5/2)-6/5*d^2*(e*x+d)^2/e^5/(-e^2*x^2 
+d^2)^(3/2)-3*d*arctan(e*x/(-e^2*x^2+d^2)^(1/2))/e^5+24/5*d*(e*x+d)/e^5/(- 
e^2*x^2+d^2)^(1/2)+(-e^2*x^2+d^2)^(1/2)/e^5
 
3.1.84.2 Mathematica [A] (verified)

Time = 0.39 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.69 \[ \int \frac {x^4 (d+e x)^3}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=\frac {\frac {\sqrt {d^2-e^2 x^2} \left (24 d^3-57 d^2 e x+39 d e^2 x^2-5 e^3 x^3\right )}{(d-e x)^3}+30 d \arctan \left (\frac {e x}{\sqrt {d^2}-\sqrt {d^2-e^2 x^2}}\right )}{5 e^5} \]

input
Integrate[(x^4*(d + e*x)^3)/(d^2 - e^2*x^2)^(7/2),x]
 
output
((Sqrt[d^2 - e^2*x^2]*(24*d^3 - 57*d^2*e*x + 39*d*e^2*x^2 - 5*e^3*x^3))/(d 
 - e*x)^3 + 30*d*ArcTan[(e*x)/(Sqrt[d^2] - Sqrt[d^2 - e^2*x^2])])/(5*e^5)
 
3.1.84.3 Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 164, normalized size of antiderivative = 1.15, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.296, Rules used = {529, 2166, 27, 2166, 27, 455, 224, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4 (d+e x)^3}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx\)

\(\Big \downarrow \) 529

\(\displaystyle \frac {d^3 (d+e x)^3}{5 e^5 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {\int \frac {(d+e x)^2 \left (\frac {3 d^4}{e^4}+\frac {5 x d^3}{e^3}+\frac {5 x^2 d^2}{e^2}+\frac {5 x^3 d}{e}\right )}{\left (d^2-e^2 x^2\right )^{5/2}}dx}{5 d}\)

\(\Big \downarrow \) 2166

\(\displaystyle \frac {d^3 (d+e x)^3}{5 e^5 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {\frac {6 d^3 (d+e x)^2}{e^5 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {\int \frac {3 (d+e x) \left (\frac {9 d^4}{e^4}+\frac {10 x d^3}{e^3}+\frac {5 x^2 d^2}{e^2}\right )}{\left (d^2-e^2 x^2\right )^{3/2}}dx}{3 d}}{5 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {d^3 (d+e x)^3}{5 e^5 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {\frac {6 d^3 (d+e x)^2}{e^5 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {\int \frac {(d+e x) \left (\frac {9 d^4}{e^4}+\frac {10 x d^3}{e^3}+\frac {5 x^2 d^2}{e^2}\right )}{\left (d^2-e^2 x^2\right )^{3/2}}dx}{d}}{5 d}\)

\(\Big \downarrow \) 2166

\(\displaystyle \frac {d^3 (d+e x)^3}{5 e^5 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {\frac {6 d^3 (d+e x)^2}{e^5 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {\frac {24 d^3 (d+e x)}{e^5 \sqrt {d^2-e^2 x^2}}-\frac {\int \frac {5 d^3 (3 d+e x)}{e^4 \sqrt {d^2-e^2 x^2}}dx}{d}}{d}}{5 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {d^3 (d+e x)^3}{5 e^5 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {\frac {6 d^3 (d+e x)^2}{e^5 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {\frac {24 d^3 (d+e x)}{e^5 \sqrt {d^2-e^2 x^2}}-\frac {5 d^2 \int \frac {3 d+e x}{\sqrt {d^2-e^2 x^2}}dx}{e^4}}{d}}{5 d}\)

\(\Big \downarrow \) 455

\(\displaystyle \frac {d^3 (d+e x)^3}{5 e^5 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {\frac {6 d^3 (d+e x)^2}{e^5 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {\frac {24 d^3 (d+e x)}{e^5 \sqrt {d^2-e^2 x^2}}-\frac {5 d^2 \left (3 d \int \frac {1}{\sqrt {d^2-e^2 x^2}}dx-\frac {\sqrt {d^2-e^2 x^2}}{e}\right )}{e^4}}{d}}{5 d}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {d^3 (d+e x)^3}{5 e^5 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {\frac {6 d^3 (d+e x)^2}{e^5 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {\frac {24 d^3 (d+e x)}{e^5 \sqrt {d^2-e^2 x^2}}-\frac {5 d^2 \left (3 d \int \frac {1}{\frac {e^2 x^2}{d^2-e^2 x^2}+1}d\frac {x}{\sqrt {d^2-e^2 x^2}}-\frac {\sqrt {d^2-e^2 x^2}}{e}\right )}{e^4}}{d}}{5 d}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {d^3 (d+e x)^3}{5 e^5 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {\frac {6 d^3 (d+e x)^2}{e^5 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {\frac {24 d^3 (d+e x)}{e^5 \sqrt {d^2-e^2 x^2}}-\frac {5 d^2 \left (\frac {3 d \arctan \left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{e}-\frac {\sqrt {d^2-e^2 x^2}}{e}\right )}{e^4}}{d}}{5 d}\)

input
Int[(x^4*(d + e*x)^3)/(d^2 - e^2*x^2)^(7/2),x]
 
output
(d^3*(d + e*x)^3)/(5*e^5*(d^2 - e^2*x^2)^(5/2)) - ((6*d^3*(d + e*x)^2)/(e^ 
5*(d^2 - e^2*x^2)^(3/2)) - ((24*d^3*(d + e*x))/(e^5*Sqrt[d^2 - e^2*x^2]) - 
 (5*d^2*(-(Sqrt[d^2 - e^2*x^2]/e) + (3*d*ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]] 
)/e))/e^4)/d)/(5*d)
 

3.1.84.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 455
Int[((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[d*(( 
a + b*x^2)^(p + 1)/(2*b*(p + 1))), x] + Simp[c   Int[(a + b*x^2)^p, x], x] 
/; FreeQ[{a, b, c, d, p}, x] &&  !LeQ[p, -1]
 

rule 529
Int[(x_)^(m_)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbo 
l] :> With[{Qx = PolynomialQuotient[x^m, a*d + b*c*x, x], R = PolynomialRem 
ainder[x^m, a*d + b*c*x, x]}, Simp[(-c)*R*(c + d*x)^n*((a + b*x^2)^(p + 1)/ 
(2*a*d*(p + 1))), x] + Simp[c/(2*a*(p + 1))   Int[(c + d*x)^(n - 1)*(a + b* 
x^2)^(p + 1)*ExpandToSum[2*a*d*(p + 1)*Qx + R*(n + 2*p + 2), x], x], x]] /; 
 FreeQ[{a, b, c, d}, x] && IGtQ[n, 0] && IGtQ[m, 1] && LtQ[p, -1] && EqQ[b* 
c^2 + a*d^2, 0]
 

rule 2166
Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] : 
> With[{Qx = PolynomialQuotient[Pq, a*e + b*d*x, x], R = PolynomialRemainde 
r[Pq, a*e + b*d*x, x]}, Simp[(-d)*R*(d + e*x)^m*((a + b*x^2)^(p + 1)/(2*a*e 
*(p + 1))), x] + Simp[d/(2*a*(p + 1))   Int[(d + e*x)^(m - 1)*(a + b*x^2)^( 
p + 1)*ExpandToSum[2*a*e*(p + 1)*Qx + R*(m + 2*p + 2), x], x], x]] /; FreeQ 
[{a, b, d, e}, x] && PolyQ[Pq, x] && EqQ[b*d^2 + a*e^2, 0] && ILtQ[p + 1/2, 
 0] && GtQ[m, 0]
 
3.1.84.4 Maple [A] (verified)

Time = 0.50 (sec) , antiderivative size = 195, normalized size of antiderivative = 1.37

method result size
risch \(\frac {\sqrt {-e^{2} x^{2}+d^{2}}}{e^{5}}-\frac {3 d \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{e^{4} \sqrt {e^{2}}}-\frac {d^{3} \sqrt {-\left (x -\frac {d}{e}\right )^{2} e^{2}-2 d e \left (x -\frac {d}{e}\right )}}{5 e^{8} \left (x -\frac {d}{e}\right )^{3}}-\frac {6 d^{2} \sqrt {-\left (x -\frac {d}{e}\right )^{2} e^{2}-2 d e \left (x -\frac {d}{e}\right )}}{5 e^{7} \left (x -\frac {d}{e}\right )^{2}}-\frac {24 d \sqrt {-\left (x -\frac {d}{e}\right )^{2} e^{2}-2 d e \left (x -\frac {d}{e}\right )}}{5 e^{6} \left (x -\frac {d}{e}\right )}\) \(195\)
default \(e^{3} \left (-\frac {x^{6}}{e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}+\frac {6 d^{2} \left (\frac {x^{4}}{e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}-\frac {4 d^{2} \left (\frac {x^{2}}{3 e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}-\frac {2 d^{2}}{15 e^{4} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}\right )}{e^{2}}\right )}{e^{2}}\right )+d^{3} \left (\frac {x^{3}}{2 e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}-\frac {3 d^{2} \left (\frac {x}{4 e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}-\frac {d^{2} \left (\frac {x}{5 d^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}+\frac {\frac {4 x}{15 d^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}+\frac {8 x}{15 d^{4} \sqrt {-e^{2} x^{2}+d^{2}}}}{d^{2}}\right )}{4 e^{2}}\right )}{2 e^{2}}\right )+3 d \,e^{2} \left (\frac {x^{5}}{5 e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}-\frac {\frac {x^{3}}{3 e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}-\frac {\frac {x}{e^{2} \sqrt {-e^{2} x^{2}+d^{2}}}-\frac {\arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{e^{2} \sqrt {e^{2}}}}{e^{2}}}{e^{2}}\right )+3 d^{2} e \left (\frac {x^{4}}{e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}-\frac {4 d^{2} \left (\frac {x^{2}}{3 e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}-\frac {2 d^{2}}{15 e^{4} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}\right )}{e^{2}}\right )\) \(438\)

input
int(x^4*(e*x+d)^3/(-e^2*x^2+d^2)^(7/2),x,method=_RETURNVERBOSE)
 
output
(-e^2*x^2+d^2)^(1/2)/e^5-3*d/e^4/(e^2)^(1/2)*arctan((e^2)^(1/2)*x/(-e^2*x^ 
2+d^2)^(1/2))-1/5*d^3/e^8/(x-d/e)^3*(-(x-d/e)^2*e^2-2*d*e*(x-d/e))^(1/2)-6 
/5*d^2/e^7/(x-d/e)^2*(-(x-d/e)^2*e^2-2*d*e*(x-d/e))^(1/2)-24/5*d/e^6/(x-d/ 
e)*(-(x-d/e)^2*e^2-2*d*e*(x-d/e))^(1/2)
 
3.1.84.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 177, normalized size of antiderivative = 1.25 \[ \int \frac {x^4 (d+e x)^3}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=\frac {24 \, d e^{3} x^{3} - 72 \, d^{2} e^{2} x^{2} + 72 \, d^{3} e x - 24 \, d^{4} + 30 \, {\left (d e^{3} x^{3} - 3 \, d^{2} e^{2} x^{2} + 3 \, d^{3} e x - d^{4}\right )} \arctan \left (-\frac {d - \sqrt {-e^{2} x^{2} + d^{2}}}{e x}\right ) + {\left (5 \, e^{3} x^{3} - 39 \, d e^{2} x^{2} + 57 \, d^{2} e x - 24 \, d^{3}\right )} \sqrt {-e^{2} x^{2} + d^{2}}}{5 \, {\left (e^{8} x^{3} - 3 \, d e^{7} x^{2} + 3 \, d^{2} e^{6} x - d^{3} e^{5}\right )}} \]

input
integrate(x^4*(e*x+d)^3/(-e^2*x^2+d^2)^(7/2),x, algorithm="fricas")
 
output
1/5*(24*d*e^3*x^3 - 72*d^2*e^2*x^2 + 72*d^3*e*x - 24*d^4 + 30*(d*e^3*x^3 - 
 3*d^2*e^2*x^2 + 3*d^3*e*x - d^4)*arctan(-(d - sqrt(-e^2*x^2 + d^2))/(e*x) 
) + (5*e^3*x^3 - 39*d*e^2*x^2 + 57*d^2*e*x - 24*d^3)*sqrt(-e^2*x^2 + d^2)) 
/(e^8*x^3 - 3*d*e^7*x^2 + 3*d^2*e^6*x - d^3*e^5)
 
3.1.84.6 Sympy [F]

\[ \int \frac {x^4 (d+e x)^3}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=\int \frac {x^{4} \left (d + e x\right )^{3}}{\left (- \left (- d + e x\right ) \left (d + e x\right )\right )^{\frac {7}{2}}}\, dx \]

input
integrate(x**4*(e*x+d)**3/(-e**2*x**2+d**2)**(7/2),x)
 
output
Integral(x**4*(d + e*x)**3/(-(-d + e*x)*(d + e*x))**(7/2), x)
 
3.1.84.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 336 vs. \(2 (126) = 252\).

Time = 0.29 (sec) , antiderivative size = 336, normalized size of antiderivative = 2.37 \[ \int \frac {x^4 (d+e x)^3}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=\frac {1}{5} \, d e^{2} x {\left (\frac {15 \, x^{4}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e^{2}} - \frac {20 \, d^{2} x^{2}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e^{4}} + \frac {8 \, d^{4}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e^{6}}\right )} - \frac {e x^{6}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}}} - d x {\left (\frac {3 \, x^{2}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}} e^{2}} - \frac {2 \, d^{2}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}} e^{4}}\right )} + \frac {9 \, d^{2} x^{4}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e} + \frac {d^{3} x^{3}}{2 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e^{2}} - \frac {12 \, d^{4} x^{2}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e^{3}} - \frac {3 \, d^{5} x}{10 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e^{4}} + \frac {24 \, d^{6}}{5 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e^{5}} + \frac {9 \, d^{3} x}{10 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}} e^{4}} - \frac {6 \, d x}{5 \, \sqrt {-e^{2} x^{2} + d^{2}} e^{4}} - \frac {3 \, d \arcsin \left (\frac {e^{2} x}{d \sqrt {e^{2}}}\right )}{\sqrt {e^{2}} e^{4}} \]

input
integrate(x^4*(e*x+d)^3/(-e^2*x^2+d^2)^(7/2),x, algorithm="maxima")
 
output
1/5*d*e^2*x*(15*x^4/((-e^2*x^2 + d^2)^(5/2)*e^2) - 20*d^2*x^2/((-e^2*x^2 + 
 d^2)^(5/2)*e^4) + 8*d^4/((-e^2*x^2 + d^2)^(5/2)*e^6)) - e*x^6/(-e^2*x^2 + 
 d^2)^(5/2) - d*x*(3*x^2/((-e^2*x^2 + d^2)^(3/2)*e^2) - 2*d^2/((-e^2*x^2 + 
 d^2)^(3/2)*e^4)) + 9*d^2*x^4/((-e^2*x^2 + d^2)^(5/2)*e) + 1/2*d^3*x^3/((- 
e^2*x^2 + d^2)^(5/2)*e^2) - 12*d^4*x^2/((-e^2*x^2 + d^2)^(5/2)*e^3) - 3/10 
*d^5*x/((-e^2*x^2 + d^2)^(5/2)*e^4) + 24/5*d^6/((-e^2*x^2 + d^2)^(5/2)*e^5 
) + 9/10*d^3*x/((-e^2*x^2 + d^2)^(3/2)*e^4) - 6/5*d*x/(sqrt(-e^2*x^2 + d^2 
)*e^4) - 3*d*arcsin(e^2*x/(d*sqrt(e^2)))/(sqrt(e^2)*e^4)
 
3.1.84.8 Giac [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 211, normalized size of antiderivative = 1.49 \[ \int \frac {x^4 (d+e x)^3}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=-\frac {3 \, d \arcsin \left (\frac {e x}{d}\right ) \mathrm {sgn}\left (d\right ) \mathrm {sgn}\left (e\right )}{e^{4} {\left | e \right |}} + \frac {\sqrt {-e^{2} x^{2} + d^{2}}}{e^{5}} + \frac {2 \, {\left (19 \, d - \frac {80 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )} d}{e^{2} x} + \frac {120 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )}^{2} d}{e^{4} x^{2}} - \frac {70 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )}^{3} d}{e^{6} x^{3}} + \frac {15 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )}^{4} d}{e^{8} x^{4}}\right )}}{5 \, e^{4} {\left (\frac {d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}}{e^{2} x} - 1\right )}^{5} {\left | e \right |}} \]

input
integrate(x^4*(e*x+d)^3/(-e^2*x^2+d^2)^(7/2),x, algorithm="giac")
 
output
-3*d*arcsin(e*x/d)*sgn(d)*sgn(e)/(e^4*abs(e)) + sqrt(-e^2*x^2 + d^2)/e^5 + 
 2/5*(19*d - 80*(d*e + sqrt(-e^2*x^2 + d^2)*abs(e))*d/(e^2*x) + 120*(d*e + 
 sqrt(-e^2*x^2 + d^2)*abs(e))^2*d/(e^4*x^2) - 70*(d*e + sqrt(-e^2*x^2 + d^ 
2)*abs(e))^3*d/(e^6*x^3) + 15*(d*e + sqrt(-e^2*x^2 + d^2)*abs(e))^4*d/(e^8 
*x^4))/(e^4*((d*e + sqrt(-e^2*x^2 + d^2)*abs(e))/(e^2*x) - 1)^5*abs(e))
 
3.1.84.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^4 (d+e x)^3}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=\int \frac {x^4\,{\left (d+e\,x\right )}^3}{{\left (d^2-e^2\,x^2\right )}^{7/2}} \,d x \]

input
int((x^4*(d + e*x)^3)/(d^2 - e^2*x^2)^(7/2),x)
 
output
int((x^4*(d + e*x)^3)/(d^2 - e^2*x^2)^(7/2), x)